December 1993 A Synthetic Route to 3-(Dialkylamino)phenothiazin-5-ium Salts and 3,7-Disubstituted Derivatives Containing Two Different Amino Groups

Lucjan Strekowski*, Dong-Feng Hou and Roman L. Wydra

Department of Chemistry, Georgia State University, Atlanta, Georgia 30303

Raymond F. Schinazi

Veterans Affairs Medical Center and Emory University School of Medicine,
Decatur, Georgia 30033
Received September 7, 1993

Phenothiazin-5-ium tetraiodide hydrate (2), the suggested oxidation product of phenothiazine with iodine, is treated with two equivalents of a dialkylamine to give 3-(dialkylamino)phenothiazin-5-ium triiodides, 3-6. 3,7-Disubstituted phenothiazin-5-ium iodides, 7-9, are obtained by the reaction of 3-6 with an amine.

J. Heterocyclic Chem., 30, 1693 (1993).

Phenothiazin-5-ium salts have long been important industrial dyes [1] and medicinal agents [2]. In particular, 3,7-bis(dimethylamino)phenothiazin-5-ium chloride (methylene blue) is approved for clinical use and is effective as an antiseptic, disinfectant, antidote for cyanide and nitrite poisoning, and a drug in the treatment of methemoglobinemia, a blood disorder. More recently it has been reported [3] that the dye inhibits intracellular replication of viruses including human immunodeficiency virus (HIV). This finding has prompted us to synthesize a series of analogs of methylene blue in order to conduct structure-activity relationship analyses for this new class of anti-HIV agents. Symmetrically 3,7-disubstituted phenothiazin-5-ium dyes including amino derivatives are relatively easy to synthesize by a number of methods [1,2,4,5]. By contrast, the preparation of the dyes functionalized with one or two different substituents is extremely difficult [5,6].

In this paper we report a general synthesis of 3-(dialkylamino)phenothiazin-5-ium salts, such as **3-6**, and disubstituted derivatives, such as **7-9**, which contains two different dialkylamino groups at the positions 3 and 7. The method is based on our reinvestigation of classical chemistry. More specifically, it has long been known [2,4] that oxida-

tion of phenothiazine (1) by bromine or iodine gives phenothiazin-5-ium perhalides, the subsequent treatment of which with an amine yields a 3,7-bis(substituted amino)phenothiazin-5-ium salt. There is a consensus that the perhalides are charge-transfer complexes, but their stoichiometry has not been demonstrated unambiguously. In our hands the treatment of 1 with molecular iodine in wet chloroform gave a dark precipitate. This solid was washed with a large volume of chloroform until the chloroform was free of iodine and then kept at 23° under a reduced pressure of 1 mm Hg for 3 hours after which time no further loss of mass was observed. The 1H nmr and 13C nmr spectra of the product indicated the presence of unsubstituted phenothiazin-5-ium cation, and the elemental analysis results were consistent with phenothiazin-5-ium tetraiodide hydrate (2). In other terms this formula corresponds to two phenothiazin-5-ium cations, two iodide counter anions, three molecules of iodine, and two molecules of water per one structural unit. Different samples of the product of the presumed structure 2 gave consistently similar elemental analyses and, remarkably, the composition did not change significantly after heating to 50° at 1 mm Hg for several hours.

The treatment of the periodide 2 with at least four molar equivalents of a dialkylamine in methanol gave a 3,7-bis(dialkylamino)phenothiazin-5-ium salt, as expected [2,4]. With two equivalents of the amine and under otherwise identical conditions the major product was a 3-(dialkylamino)phenothiazin-5-ium triiodide 3-6 [7]. Analytically pure samples of 3-6 were obtained by a single crystallization from methanol. The ¹H and ¹³C nmr spectra of 3 and the corresponding chloride salt obtained by an independent method [6] were virtually identical [8]. The triiodide 3 was allowed to react with several secondary amines to give the corresponding 3-(dimethylamino)-7-(dialkylamino)phenothiazin-5-ium iodides 7-9. Again, a single crystallization from methanol was sufficient to obtain products 7-9 of high purity [9].

In summary, we have shown a practical method for the preparation of 3-(dialkylamino)phenothiazin-5-ium salts and 3,7-disubstituted analogs containing different dialkylamino groups. The method is remarkably simple, and purification of products does not involve chromatography [9].

EXPERIMENTAL

All reactions were conducted under an open atmosphere of air and by using standard solvents without drying. Melting points (Pyrex capillary) are not corrected. Unless otherwise stated ¹H nmr spectra (400 MHz, Varian VXR-400) and ¹³C nmr spectra (68 MHz, Jeol EX-270) were taken in dimethyl sulfoxide-d₆ solutions with tetramethylsilane as an internal standard. The indicated assignments for proton chemical shifts were obtained with extensive use of nOe and decoupling experiments. The uv/vis spectra were taken in methanol solutions.

Phenothiazin-5-ium Tetraiodide Hydrate, 2.

A solution of phenothiazine (2.13 g, 11 mmoles) in chloroform (75 ml) was stirred at 5° and treated dropwise within 1 hour with a solution of iodine (8.38 g, 33 mmoles) in chloroform (175 ml). The mixture was stirred at 5° for an additional 30 minutes and the resultant precipitate was filtered, washed with chloroform (1 θ), and then kept at 23° at 1 mm Hg for 3 hours to give 6.72 g (87%) of 2; ¹H nmr (acetone-d₆): δ 8.05 (m, 2H), 7.96 (m, 2H), 7.69 (m, 4H); ¹³C nmr (acetone-d₆): δ 100.1, 124.3, 124.6, 125.0, 140.5, 154.8.

Anal. Calcd. for $C_{12}H_8NS\cdot I_4\cdot H_2O$: C, 19.91; H, 1.39; N, 1.94. Found: C, 19.58; H, 1.32; N, 1.80.

General Procedure for Preparation of Compounds 3-6.

A solution of salt 2 (0.417 g, 0.72 mmole) in methanol (10 ml) was stirred at 23° and treated dropwise with a solution of an amine (1.45 mmoles) in methanol (2 ml). The mixture was stirred at 23° for 2 to 3 hours until the salt 2 was consumed, as monitored by tlc on silica gel with a 3% solution of ammonium acetate in aqueous methanol (85%) as an eluent. The precipitate was filtered and extracted with methanol (5 x 10 ml). The filtrate and the extract were combined and concentrated. Products 3-6 crystallized from the concentrated solution upon cooling.

3-(Dimethylamino)phenothiazin-5-ium Triiodide, 3.

This compound was obtained from **2** and dimethylamine, mp 149-150°, yield 24%; ¹H nmr: δ 3.62 and 3.65 (2s, 6H, NMe₂), 7.86 (m, 2H, H-7 and H-8), 8.00 (d, J = 2.4 Hz, 1H, H-4), 8.04 (dd, J = 10 Hz, J = 2.4 Hz, 1H, H-2), 8.10 (d, J = 10 Hz, 1H, H-1), 8.17 (dd, J = 8 Hz, J = 1.6 Hz, 1H, H-6), 8.22 (dd, J = 8 Hz, J = 1.6 Hz, 1H, H-9); ¹³C nmr: δ 42.8, 43.3, 109.7, 125.9, 126.1, 126.3, 129.8, 133.2, 134.6, 138.1, 139.6, 139.9, 144.2, 156.2; uv/vis: λ max 577 nm (ϵ 14400).

Anal. Calcd. for $C_{14}H_{13}N_2S\cdot I_3$: C, 27.03; H, 2.11; N, 4.36. Found: C, 27.30; H, 2.14; N, 4.36.

3-(Diethylamino)phenothiazin-5-ium Triiodide, 4.

This compound was obtained from **2** and diethylamine, mp 147-148°, yield 23%; 'H nmr: δ 1.34 and 1.36 (2t, J = 7 Hz each, 6H, 2 Me of 2 Et), 3.97 and 4.01 (2q, J = 7 Hz each, 4H, 2 CH₂ of 2 Et), 7.86 (m, 2H, H-7 and H-8), 8.04 (m, 2H, H-2 and H-4), 8.11 (d, J = 10.4 Hz, 1H, H-1), 8.18 (dd, J = 8 Hz, J = 1.6 Hz, 1H, H-6), 8.23 (dd, J = 8 Hz, J = 1.6 Hz, 1H, H-9); '3°C nmr: δ 13.3, 13.7, 47.9, 48.2, 109.3, 125.9, 126.3, 129.9, 133.3, 134.6, 138.8, 139.6, 139.9, 140.4, 144.1, 155.1; uv/vis: λ max 579 nm (\$\epsilon\$ 15500). Anal. Calcd. for C₁₆H₁₇N₂S·I₃: C, 29.56; H, 2.64; N, 4.31. Found: C, 30.05; H, 2.61; N, 4.27.

3-(Dibutylamino)phenothiazin-5-ium Triiodide, 5.

This compound was obtained from 2 and dibutylamine, mp 134-135°, yield 22%; 1 H nmr: δ 0.95 and 0.98 (2t, J = 7 Hz each, 6H, 2 Me of 2 Bu), 1.44 (m, 4H, 2 CH₂ of 2 Bu), 1.72 (m, 4H, 2 CH₂ of 2 Bu), 3.91 and 3.94 (2q, J = 7 Hz each, 4H, CH₂NCH₂), 7.86 (m, 2H, H-7 and H-8), 8.03 (m, 2H, H-2 and H-4), 8.09 (d, J = 10 Hz, 1H, H-1), 8.17 (dd, J = 8 Hz, J = 1.6 Hz, 1H, H-6), 8.23 (dd, J = 8 Hz, J = 1.6 Hz, 1H, H-9); 13 C nmr: δ 13.6, 13.7, 19.3, 19.4, 29.8, 30.4, 52.9, 53.3, 109.3, 126.0, 126.0, 126.3, 129.8, 133.2, 134.5, 138.7, 139.6, 140.2, 144.2, 155.4; uv/vis: λ max 583 nm (ϵ 10900).

Anal. Calcd. for $C_{20}H_{25}N_2S \cdot I_3$: C, 34.01; H, 3.57; N, 3.97. Found: C, 34.28; H, 3.52; N, 3.91.

3-Morpholinophenothiazin-5-ium Triiodide, 6.

This compound was obtained from **2** and morpholine, mp 196-197°, yield 42%; 'H nmr: δ 3.91 (m, 4H, CH₂OCH₂), 4.21 (m, 4H, CH₂NCH₂), 7.87 (m, 2H, H-7 and H-8), 8.11-8.25 (m, 5H, H-1, H-2, H-4, H-6, and H-9); ¹³C nmr: δ 50.4, 50.6, 66.2, 66.5, 109.3, 125.6, 126.4, 130.0, 133.4, 134.7, 138.9, 139.9, 140.0, 140.2, 144.4, 155.0; uv/vis: λ max 583 nm (ϵ 12700).

Anal. Calcd. for $C_{16}H_{15}N_2OS \cdot I_3$: C, 28.94; H, 2.28; N, 4.22. Found: C, 29.25; H, 2.37; N, 4.19.

General Procedure for Preparation of Compounds 7-9.

A solution of dye 3 (93 mg, 0.15 mmole) in methanol (10 ml) was stirred at 23° and treated dropwise with a solution of an amine (0.35 mmole) in methanol (2 ml). The progress of the reaction was monitored by tlc as described above. After 4 hours of stirring when compound 3 was consumed, the resultant precipitate was filtered and washed with cold methanol and then ether. Crystallization from methanol yielded an analytically pure dye 7-9.

3-(Dimethylamino)-7-piperidinophenothiazin-5-ium Iodide, 7.

This compound was obtained from 3 and piperidine, mp 217-218°, yield 70%; ¹H nmr: δ 1.72 (m, 6H), 3.35 (s, 6H), 3.87 (m,

4H), 7.48 (m, 2H), 7.70 (m, 2H), 7.90 (m, 2H); 13 C nmr: δ 23.5, 26.1, 41.0, 49.0, 106.6, 107.0, 119.1, 119.2, 133.3, 134.1, 134.9, 135.2, 137.6, 138.1, 152.7, 153.7; uv/vis: λ max 661 nm (ϵ 99800).

Anal. Calcd. for $C_{19}H_{22}N_3S \cdot I$: C, 50.56; H, 4.91; N, 9.31. Found: C, 50.20; H, 4.88; N, 9.18.

3-(Dimethylamino)-7-morpholinophenothiazin-5-ium Iodide, 8.

This compound was obtained from **3** and morpholine, mp 244-245°, yield 53%; 'H nmr: δ 3.40 (s, 6H), 3.79 (m, 4H), 3.84 (m, 4H), 7.56 (dd, J = 10 Hz, J = 2.4 Hz, 1H), 7.58 (br s, 1H), 7.65 (dd, J = 10 Hz, J = 2 Hz, 1H), 7.71 (br s, 1H), 7.95 (m, 2H); uv/vis: λ max 661 nm (ϵ 80700).

Anal. Calcd. for $C_{18}H_{20}N_3OS$ ·I: C, 47.69; H, 4.45; N, 9.27. Found: C, 47.14; H, 4.47; N, 9.05.

3-(Dimethylamino)-7-(thiomorpholino)phenothiazin-5-ium Iodide,

This compound was obtained from **3** and thiomorpholine, mp 256-257°, yield 63%; 1 H nmr: δ 2.82 (m, 4H, CH₂SCH₂), 3.40 (s, 6H, NMe₂), 4.17 (m, 4H, CH₂NCH₂), 7.55 (dd, J = 9.6 Hz, J = 2 Hz, 1H, H-2), 7.57 (br s, 1H, H-4), 7.65 (dd, J = 9.6 Hz, J = 2 Hz, 1H, H-8), 7.72 (d, J = 2 Hz, 1H, H-6), 7.93 (d, J = 9.6 Hz, 2H, H-1 and H-9); uv/vis: λ max 658 nm (ϵ 85100).

Anal. Calcd. for $C_{18}H_{20}N_3S_2$ -I: C, 46.06; H, 4.30; N, 8.95. Found: C, 46.07; H, 4.31; N, 8.90.

Acknowledgements.

This work was supported by the National Institutes of Health (grant AI-27196). The Varian VXR-400 nmr spectrometer was obtained with partial support from an award by the NSF Instrumentation Program (CHEM-8409599).

REFERENCES AND NOTES

- [1] For a review, see: H. Zollinger, Color Chemistry: Synthesis, Properties and Applications of Organic Dyes and Pigments, VCH Publishers, Inc., Weinheim, Germany, 1991.
- [2] For a review, see: Rodd's Chemistry of Carbon Compounds, Vol 4, Part H, S. Coffey, ed, Elsevier Scientific Publishing Co., Amsterdam, 1978, pp 516-534.
- [3] R. A. Floyd, J. E. Schneider, Jr., Y. Q. Zhu, T. W. North and R. F. Schinazi, Proc. Am. Assoc. Cancer Res., 34, 359 (1993).
- [4] For a review, see: C. Bodea and I. Silberg in Advances in Heterocyclic Chemistry, Vol 9, A. R. Katritzky and A. J. Boulton, eds, Academic Press, New York, 1968, pp 321-460.
 - [5] S. J. Valenty, J. Colloid Interface Sci., 68, 486 (1979).
- [6] H. U. Bergmeyer, E. Haid, M. Nelboeck-Hochstetter and G. Weimann, German Offen. 1959410 (1971); Chem. Abstr., 75, 85111h (1971).
- [7] A regioselective addition of nucleophilies at position 3 of the phenothiazin-5-ium cation has been mentioned: A. R. Katritzky, Handbook of Heterocyclic Chemistry, Pergamon Press, Oxford, 1986, p 208. To our best knowledge this observation has never been developed into a practical synthesis of 3-(substituted amino)phenothiazin-5-ium derivatives.
- [8] Interestingly, the dialkylamino substituent in 3-6 exhibits a hindered rotation in the nmr time scale, as can be seen from the ¹H nmr and ¹³C nmr spectra. This feature is not seen in the nmr spectra of bis(dialkylamino) derivatives 7-9.
- [9] An alternative purification of **3-6** and **7-9** involves treatment of solutions of these compounds in methanol with 1.1 equivalents of perchloric acid or lithium perchlorate in methanol to precipitate the corresponding phenothiazin-5-ium perchlorate derivative. The perchlorate salts can be crystallized from methanol.